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1 Introduction

One of the most exciting topics in the high energy theory over the last decades is the

correspondence between the strings and the gauge fields. One of the most promising

explicit realizations of this correspondence was provided by the Maldacena conjecture about

AdS/CFT correspondence [1].

The semi-classical string has played an important role in studying various aspects of the

AdS5/SY M4 correspondence [2]–[41]. The developments and successes in this particular

case suggest the methods and tools that should be used to investigate the new emergent

duality. The best studied example of the duality between the string and gauge theories

is the AdS/CFT correspondence on AdS5 × S5. One of the most important predictions

of the correspondence is the equivalence between the spectrum of the string theory and

the spectrum of anomalous dimensions of gauge invariant operators. There has been a

good deal of success recently in comparing of the energies of the semiclassical strings and

the anomalous dimensions of the gauge theory operators. Some of the lessons we have

learned from the AdS/CFT correspondence on AdS5 × S5 teach us the following. The

strong evidences for integrability suggest to look for an appropriate scattering matrix S
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which in principle encodes in a certain way the dynamics. On the string side, in the strong

coupling limit the S matrix can be interpreted as describing the two-body scattering of

elementary excitations on the world sheet. When their world-sheet momenta become large,

these excitations can be described as special types of solitonic solutions, or giant magnons,

and the interpolating region is described by the dynamics of the so-called near-flat-space

regime [12, 28, 29]. On the gauge theory side, the action of the dilatation operator on

single-trace gauge-invariant operators is the same as that of a Hamiltonian acting on the

states of a certain spin chain [5]. This turns out to be of great advantage because one

can diagonalize the matrix of anomalous dimensions by using the “magic” algebraic Bethe

ansatz technique. The insertion of different operators into the single trace long operators

is interpreted as magnons and the S-matrix factorizes to two-magnon scatterings governing

the spectrum.

On the string theory side, the corresponding classical string solutions are called giant

magnons and have the shape of arcs moving along some isometry direction. The angle

deficit defined by the end points of the arcs is identified as the momentum of the magnon,

while the dispersion relations determine the anomalous dimension of a certain gauge theory

operator at strong coupling.

Another important string solution is the so called single spike string. Its shape has only

a single spike and a large winding number in some isometry direction. While the giant

magnon solutions can be interpreted as higher twist operators in the field theory, the single

spike solutions do not seem to be directly related to particular field theory operators. How-

ever, in [14] an interpretation of this solution as a spin chain Hubbard model, which means

the antiferromagnetic phase of the corresponding spin chain, was suggested, but the relation

to the field theory operators is still unclear. Although not completely understood, the spiky

string solutions are believed to play an important role in the AdS/CFT correspondence.

After the impressive achievements in the most supersymmetric example of the AdS/CFT

correspondence, namely AdS5 × S5, it is important to extend the considerations to less

supersymmetric gauge theories, moreover that the latter are more interesting from the

physical point of view. In the known to the authors cases of less supersymmetry we are not

that lucky to have firm evidences for integrability as in the AdS5×S5 case. The lessons from

the most supersymmetric case, however, suggest investigation of the string solutions of the

giant magnon and the sigle spike type. These solitonic solutions are supposed to play an

analogous role, namely, their quantum numbers to be related to the corresponding gauge

theory quantum numbers in a way dictated by the holographic correspondence. Thus,

although we have no clear signs for itegrability one can still concentrate on these sectors

and analyze the infromation that can be extracted on both sides of the correspondence.

There are several ways to find a theory with less supersymmetry. One of them is suggested

by Lunin and Maldacena [30]. The authors consider N = 4 supersymmetric Yang-Mills

(SYM) and its marginal deformations [31]. In [30] the supergravity dual of marginaly

deformed supersymmetric Yang-Mills theory has been identified. An explicit deforming

procedure, called TsT transformation, and the integrability of the resulting backgrounds
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has been presented in [32]. Giant magnons and single spike strings have been studied

in [33]–[37]. In [33, 34] the deformation parameter enters the dispersion relation for the

giant magnon as a shift by πγ. In [37] it was argued that, in the limit of the conserved charge

J = J/g →∞ and upon the identification γ
√
λ ∼ γ̂, the shift by γ should not be seen by

the classical theory. It is important however that the deformation introduces a non-trivial

twist in the boundary conditions for the isometry directions with essential consequences.

There is another way to approach less supersymmetric backgrounds. The experience from

the AdS/CFT correspondence suggests that one can take a stack of N D3 branes and

place them not in a flat space, but at the apex of a conifold [42]. This model possess

a lot of interesting features and allows to build gauge theory operators of great physical

importance. The resulting ten dimensional space time takes form of the direct product

AdS5 × T 1,1. Since then infinite families of five dimensional spaces, called Sasaki-Einstein

spaces, complementing AdS5 space have been constructed [43]–[44] as well as their gauge

theory duals were identified [45]–[48]. Further developments can be traced in [43]–[54].

The powerful solution generating technique based on the Lunin-Maldacena construction

has been applied to various backgrounds in [30, 38]. The deformations in these papers also

include the conifold which is certainly of interest for the AdS/CFT correspondence.

Inspired by the considerations in [54] and [55, 57], we investigate the giant magnon and

the single spike string solutions in the beta-deformed conifold background. The dispersion

relations are supposed to describe the anomalous dimensions of a particular class of gauge

theory operators. We expect our results to shed some light on the conjectured duality.

The paper is organized as follows. In the second section we review the result of [54], beta-

deformations and giant magnons and spiky strings in such backgrounds. Section 3 presents

the string theory in a consistently truncated subsector of T 1,1. In section 4 we derive the

dispersion relations for the cases of giant magnon and single spike string solutions. The

obtained results are summarized in Conclusions. Some helpful formulae are presented in

an appendix.

2 Review of the known results

In this section we review first the giant magnon and the single spike strings on the conifold

and then briefly describe the same issues in the beta-deformed S5
γ (here γ = ℜβ). We fix

here some notations and present the methods which will be used in what follows.

2.1 Giant magnons and single spike strings on the conifold

Here we will briefly review the results of [54]. The metric of the conifold can be written as

dr2 + r2 dΩ2
T 1,1 and combined with the metric of a stack of N D3 branes can be organized

as AdS5 × T 1,1. The description best suited for our purpose is as follows. Let us consider

strings moving in T 1,1, which is a homogeneous space (SU(2) × SU(2))/U(1), with U(1)
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chosen to be a diagonal subgroup of the maximal torus in SU(2) × SU(2). One can start

with more general set up of squashed spheres employed in [54] with an explicit form of the

metric written as U(1) bundle over S2 × S2,

ds2 =a
(

dθ2
1 + sin2 θ1dφ

2
1 + dθ2

2 + sin2 θ2dφ
2
2

)

+ b (dψ + p cos θ1dφ1 + q cos θ2dφ2)
2 . (2.1)

Here θi, φi are the coordinates of the two S2’s, and the U(1) fiber is parameterized by

ψ ∈ [0, 4π]. The space is an Einstein manifold if the following choice of the parameters

is made a = 1
6 , b = 1

9 . Supersymmetry requirements further restricts p = q = 1 and thus

the space becomes supersymmetric, i.e. the resulting Sasaki-Einstein manifold allows two

Killing spinors, hence N = 1 supersymmetry.

The part T 1,1 provides the angular part of a singular Calabi-Yau manifold. One can easily

see from eq. (2.1) that the isometry is SU(2)×SU(2)×U(1). The three mutually commuting

Killing vectors can be chosen as ∂φ1
, ∂φ2

, ∂ψ.

We will proceed however with the choice p = q = 1 but with squashing parameter b

unfixed (a = b/4). It was shown in [54] that one can consistently set, say θ2, φ2 = const.

The starting point then is the subspace of T 1,1 corresponding to the metric

ds2 = −dt2 +
b

4

[

dθ2 + sin2 θ dφ2 + b
(

dψ − cos θ dφ
)2
]

, (2.2)

where the time coordinate t ∈ R originates from AdS5.

Equations. Let us consider the sector defined by θ2, φ2 = const. To obtain solitonic

solutions we use the ansatz

t = κτ, θ ≡ θ1 = θ(y), Ψ = ωψτ + ψ(y), Φ = ωφτ + φ(y), (2.3)

where y = −dτ + cσ, Ψ describes the U(1) fiber and Φ ≡ φ1.

Integrating once the equations for the angles Ψ and Φ in terms of θ and using the Virasoro

constraints one finds

u′ = 4
[

a4u
4 + a3u

3 + a2u
2 + a1u+ a0

]

. (2.4)

where u = cos2 θ/2. Imposing appropriate boundary conditions we end up with (α± > 0).

u′2 = α2ωφu
2
(

α+ − u
)(

u+ α−
)

. (2.5)

The following relations between the integration constants and the frequencies determine

the profile of the solution (Aψ = Aφ)

Aφ =
d

9

(

ωψ + ωφ
)

giant magnon (2.6)

Aφ =
c2

9d2

(

ωψ + ωφ
)

single spike. (2.7)
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Dispersion relations. For the magnon type and the spiky string solutions the conserved

charges are

Pt = −T b
2
(ωψ + ωφ) (2.8)

Pψ = Tb

(

b

4
(ωψ + ωφ)−

bωφ

2
(

1− d/c)2
)u(y)

)

(2.9)

Pφ = Tb

(

b

4
(ωψ + ωφ)−

bωφ

2
(

1− (d/c)2
)

(

2(1 − b)u(y)2 +
(

bΩ− 2(1− b)
)

u(y)
)

)

, (2.10)

where u(y) = cos2 θ/2 and Ω = (1− b)/b.

The finite quantities giving the dispersion relations are

E − 2

b
Jψ, E − 2

b
Jφ, E − Jψ + Jφ

b
,

Jψ − Jφ
b

. (2.11)

The giant magnon dispersion relation on the conifold is
√

3

2

(

E − 3Jψ
)

=

√
3
(

E − 3Jψ
)

/2− cos ∆φ

sin
(√

3(E − 3Jψ)/2
) . (2.12)

Note that the dispersion relations are quite different from those in the most supersymmet-

ric case.

The single spike string solutions obey the following dispersion relations

3
√

3Jψ
2

=
cos(3

√
3Jψ)− cos(2/3E −∆ϕ)

sin(3
√

3Jψ)
. (2.13)

Again the dispersion relations are quite different from those in the most supersymmetric

case, namely they have transcendental functional dependence between the charges.

Gauge theory side. The dual conformal field theory is known as the Klebanov-Witten

model [42] and is constructed considering a stack of D3 branes, placed at the tip of

a conifold.

The dual conformal field theory is identified as N = 1 supersymmetric U(N)×U(N) gauge

theory with two chiral multiplets Ai in (N,N) and another two, usually denoted by Bi, in

(N,N). The angular part of the conifold is T 1,1 and its isometries determine the global

symmetries of the gauge theory. Being U(1) bundle over S2 × S2, this theory obviously

has SU(2)× SU(2) global symmetry which act separately on the doublets Ai, Bi, and also

a non-anomalous U(1) R-symmetry.

The most general superpotential which respects the SU(2)× SU(2)×U(1)R symmetry is a

quartic superpotential of the form

W =
g

2
ǫijǫklTrAiBkAjBl. (2.14)
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Note that there is also a Z2 symmetry. In the geometric picture, i.e. on the conifold, it

acts as a reflection and from the gauge theory point of view it exchanges the two pairs Ai
and Bj .

The AdS/CFT correspondence suggests that the anomalous dimension of the gauge theory

operators are encoded in the dispersion relation in the string theory. Therefore, here we

are interested primarily in the conserved quantities which are the energy E =
√
λκ and

the following three angular momenta,

JA ≡ Pφ1
, JB ≡ Pφ2

, JR ≡ Pψ. (2.15)

In order to have a reliable comparison we must consider the long composite operators

constructed out of Ai and Bj. Then, it is natural to suggest a correspondence between

quantum numbers in the string theory and the dual operators. As it was shown in [42], the

strings moving in T 1,1 are dual to pure scalar operators, i.e. they do not contain fermions,

covariant derivatives or gauge field strengths. One can construct a scalar by making use of

the fact that they are in the bi-fundamental representation. Therefore, the gauge singlets

have the form

Tr
(

AB · · ·A Ā · · · B̄ B · · · B̄ Ā · · ·
)

. (2.16)

This form of the operators suggests the correspondence

JA ←→
1

2

[

#(A1)−#(A2) + #(A2)−#(A1)
]

(2.17)

JB ←→
1

2

[

#(B1)−#(B2) + #(B2)−#(B1)
]

(2.18)

JR ←→
1

4

[

#(Ai) + #(Bi)−#(Ai)−#(Bi)
]

(2.19)

where #(A1) is the number of A1’s under the trace of the dual composite operator etc.

We note that there exists an inequality between the bare dimension and the R-charge,

which is quite natural when written in terms of string variables,

E ≥ 3|JR| . (2.20)

On the gauge theory side it comes from the unitarity bound of N = 1 superconformal

algebra. When the bound is saturated the primary fields close a chiral ring. The com-

plete dictionary between conserved charges in the string theory and the dual gauge theory

operator remains an open problem.

The derivation of the general string solution is a subject to much more complicated task

related to issues as integrability etc.

2.2 Giant magnons and single spike strings on S3
γ

Here we review the β-deformed AdS5×S5 background found by Lunin and Maldacena [30].

This background is conjectured to be dual to the Leigh-Strassler marginal deformations of

– 6 –
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N = 4 SYM [31]. We note that this background can be obtained from pure AdS5×S5 by a

series of TsT transformations as described in [32]. The deformation parameter β = γ+ iσd
is in general a complex number, but in our analysis we will consider σd = 0, in this case

the deformation is called γ-deformation. The resulting supergravity background dual to

real β-deformations of N = 4 SYM is:

ds2 = R2

(

ds2AdS5
+

3
∑

i=1

(dµ2
i +Gµ2

i dφ
2
i ) + γ̃2Gµ2

1µ
2
2µ

2
3

(

3
∑

i=1

dφ2
i

))

(2.21)

This background includes also a dilaton field as well as RR and NS-NS form fields. The

relevant form for our classical string analysis will be the antisymmetric B-field:

B = R2γ̃G
(

µ2
1µ

2
2dφ1dφ2 + µ2

2µ
2
3dφ2dφ3 + µ2

1µ
2
3dφ1dφ3

)

(2.22)

In the above formulae we have defined

γ̃ = R2γ R2 =
√

4πgsN =
√
λ

G =
1

1 + γ̃2(µ2
1µ

2
2 + µ2

2µ
2
3 + µ2

1µ
2
3)

µ1 = sin θ cosψ µ2 = cos θ µ3 = sin θ sinψ

(2.23)

Where (θ,ψ,φ1,φ2,φ3) are the usual S5 variables. This is a deformation of the AdS5 × S5

background governed by a single real deformation parameter γ̃ and thus provides a useful

setting for the extension of the classical strings/spin chain/gauge theory duality to less

supersymmetric cases.

Let us consider the motion of a rigid string on S3
γ . This space can be thought of as a

subspace of the γ-deformation of AdS5 × S5 presented above

µ3 = 0, φ3 = 0 i.e. ψ = 0, φ3 = 0. (2.24)

The relevant part of the γ-deformed AdS5 × S5 is

ds2 = −dt2 + dθ2 +G sin2 θdφ2
1 +G cos2 θdφ2

2 (2.25)

where G =
1

1 + γ̃2 sin2 θ cos2 θ
and due to the series of T-dualities there is a non-zero

component of the B-field

Bφ1φ2
= γ̃G sin2 θ cos2 θ (2.26)

We will work in the conformal gauge and thus use the Polyakov action (T =
√
λ

2π )

S =
T

2

∫

d2σ
[

− (∂τ t)
2 + (∂τθ)

2 − (∂σθ)
2 +G sin2 θ

(

(∂τφ1)
2 − (∂σφ1)

2
)

(2.27)

+G cos2 θ
(

(∂τφ2)
2 − (∂σφ2)

2
)

+ 2γG sin2 θ cos2 θ (∂τφ1∂σφ2 − ∂σφ1∂τφ2)
]
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which is supplemented by the Virasoro constraints

gµν∂τX
µ∂σX

ν = 0 gµν(∂τX
µ∂τX

ν + ∂σX
µ∂σX

ν) = 0. (2.28)

Here gµν is the metric (2.25) and Xµ = {t, θ, φ1, φ2}. The ansatz

t = κτ θ = θ(y) φ1 = ω1τ + φ̃1(y) φ2 = ω2τ + φ̃2(y) (2.29)

describes the motion of rigid strings on the deformed 3-sphere, here we have defined a new

variable y = ασ+βτ . One can substitute the above ansatz in the equations of motion and

use one of the Virasoro constraints to find three first order differential equations for the

unknown functions:

φ̃1
′
=

1

α2 − β2

(

A

G sin2 θ
+ βω1 − γ̃αω2 cos2 θ

)

φ̃2
′
=

1

α2 − β2

(

B

G cos2 θ
+ βω2 + γ̃αω1 sin2 θ

)

(θ′)2 =
1

(α2 − β2)2

[

(α2 + β2)κ2 − A2

G sin2 θ
− B2

G cos2 θ
− α2ω2

1 sin2 θ − α2ω2
2 cos2 θ

+2γ̃α(ω2A cos2 θ − ω1B sin2 θ)

]

(2.30)

A and B are integration constants and the prime denotes derivative with respect to y. The

other Virasoro constraints provides the following relation between the parameters

Aω1 +Bω2 + βκ2 = 0 (2.31)

This system has three conserved quantities - the energy and two angular momenta:

E = 2T
κ

α

∫ θ1

θ0

dθ

θ′

J1 = 2
T

α

∫ θ1

θ0

dθ

θ′
G sin2 θ

[

ω1 + βφ̃′1 + γ̃α cos2 θφ̃′2
]

J2 = 2
T

α

∫ θ1

θ0

dθ

θ′
G cos2 θ

[

ω2 + βφ̃′2 + γ̃α sin2 θφ̃′1
]

(2.32)

where the integration is performed over the range of the coordinate θ. In the analysis

below we will find solutions of the above equations and relations between the energy and

the angular momenta for some special values of the parameters. These solutions include

the giant magnon and the single spike solution on the deformed S3.

The conditions which determine the type of the solution come from the requirement of

existence of a turning point at θ = π/2. This condition sets B = 0 and provides the

following choice

(i)
κ2

ω2
1

= 1 the giant magnon solution of [12]

(ii)
κ2β2

α2ω2
1

= 1 the single spike solution of [14]

(2.33)

The dispersion relations in the two cases are as follows.

– 8 –
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Giant magnons. If we choose κ2 = ω2
1 (which through the Virasoro constraint implies

A = −βω1) we get the giant magnon solution on S3
γ found in [34, 35]. The equations of

motion for this case are:

φ̃′1 = − cos2 θ

α2 − β2

(

βω1

sin2 θ
+ γ̃αω2 + γ̃2βω1

)

φ̃′2 =
βω2 + γ̃αω1 sin2 θ

α2 − β2

θ′ =
αΩ0

(α2 − β2)

cos θ

sin θ

√

sin2 θ − sin2 θ0

(2.34)

where we have defined

sin θ0 =
βω1

αΩ0
and Ω0 =

√

ω2
1 −

(

ω2 + γ̃
βω1

α

)2

(2.35)

Using the expressions for the energy and the angular momentum (2.32) and equations (2.34)

we find

E − J1 = 2T
ω1

Ω0
cos θ0

J2 = 2T

(

ω2

Ω0
+ γ̃

βω1

αΩ0

)

cos θ0 (2.36)

These expressions lead to the dispersion relation for the giant magnon solution on γ-

deformed S3 [33, 34]

E − J1 =

√

J2
2 +

λ

π2
cos2 θ0 (2.37)

In order to make a connection with the spin chain description we should identify cos θ0 =

sin
(

p
2 − πβ

)

, where p is the momentum of the magnon excitation on the spin chain and

β = γ̃/
√
λ. So the prediction for the relevant spin chain dispersion relation is

E − J1 =

√

J2
2 +

λ

π2
sin2

(p

2
− πβ

)

(2.38)

this relation is invariant under p → p + 2π and β → β + 1 as is required by the spin

chain analysis [39, 40]. In [37] a detailed analysis of the infinite limit of the charges, as

well as finite size corrections, is presented. It was argued that in the limit J = J/g →∞
the dispersion relations does not feel the deformation since it shows up just as a shift

by πγ. It is important however that the deformation produces a non-trivial twist in the

boundary conditions for the isometry directions which is proportional to ∼ γJ . The latter

has non-trivial consequences, the analysis of which can be seen in [37].

Single spikes. The string profile with one single spike and a large winding number is

realized when β2κ2 = α2ω2
1 and hence A = −ω1α

2

β
[14]. It is natural to expect the existence
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of a rigid string solution solution on S3
γ which is the analogue of the single spike solution

on S3 found in [14]. The equations of motion are

φ̃′1 =
1

α2 − β2

(

βω1 −
α2ω1

β sin2 θ
− γ̃α

√

ω2
1 − Ω2

1 cos2 θ

)

φ̃′1 =
1

α2 − β2
(βω2 + γ̃αω1 sin2 θ)

θ′ =
αΩ1

(α2 − β2)

cos θ

sin θ

√

sin2 θ − sin2 θ1 (2.39)

where

sin θ1 =
αω1

βΩ1
Ω1 =

√

ω2
1 −

(

ω2 + γ̃
αω1

β

)2

(2.40)

The two conserved angular momenta are

J1 = 2T
ω1

Ω1
cos θ1 J2 = −2T

√

ω2
1 − Ω2

1

Ω1
cos θ1 (2.41)

The relation between the conserved charges becomes

J1 =

√

J2
2 +

λ

π2
cos2 θ1 (2.42)

This looks identical to the corresponding expression in the undeformed case, the dependence

on the deformation parameter γ̃ is buried in the definition of cos θ1. In analogy with the

giant magnon solution we can identify cos θ1 = sin
(

p
2 − πβ

)

.

For the relation between E and ∆φ1 we find:

E − T∆φ1 =

√
λ

π

(π

2
− θ1

)

− γ̃
√
λ

π

√

ω2
1 − Ω2

1

Ω1
cos θ1 (2.43)

As should be expected that in the limit γ̃ → 0 this expression reduces to the one for the

single spike solution on undeformed S3.

3 Giant magnon and single spike string solutions on the deformed T 1,1

In this section we present the classical solutions in a particular (consistent) subsector of the

deformed conifold. First we will give a short set up of the beta-deformed conifold [30, 38].

Next we consider a solitonic ansatz for the giant magnon and single spike classical string

solutions and find the explicit form of the solutions. At the end of this section we briefly

comment on the motion of rigid folded strings in the deformed background.

Since the beta-deformed T 1,1 is known, we will quote here only its final form referring

for instance to [30, 38]. The starting point of the deformation procedure is the metric of

AdS5 × T 1,1

ds2

R2
= ds2AdS +

1

6

2
∑

i=1

(

dθ2
i + sin2 θi dφ

2
i

)

+
1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)

2 . (3.1)
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Here we set the deformation parameter of the squashed sphere to b = 2/3, i.e. conifold.

Note that there is no B-field.

According to the procedure, described in [30, 32], the deformed geometry can be obtained

by applying T-duality and a shift followed by another T-duality. The whole procedure can

be organized in a single transformation as in [30, 38] and the result is given by

ds2

R2
= ds2AdS +G

[

1

6

2
∑

i=1

(G−1dθ2
i + sin2 θi dφ

2
i )

+
1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)

2 + γ̃2 sin2 θ1 sin2 θ2
324

dψ2

]

(3.2)

Due to the T-dualities a non-trivial B-field is generated

B

R2
= γ̃G

[(

sin2 θ1 sin2 θ2
36

+
cos2 θ1 sin2 θ2 + cos2 θ2 sin2 θ1

54

)

dφ1 ∧ dφ2

+
sin2 θ1 cos θ2

54
dφ1 ∧ dψ −

cos θ1 sin2 θ2
54

dφ2 ∧ dψ
]

. (3.3)

The conformal factor in the metric and the B-field has the form1

G−1 = 1 + γ̃2

(

cos2 θ1 sin2 θ2 + cos2 θ2 sin2 θ1
54

+
sin2 θ1 sin2 θ2

36

)

. (3.4)

3.1 Giant magnon and single spike string solutions

Let us start with some simplifications of the problem under consideration. The complete

solution of the non-linear problem is a very complicated task so we will restrict ourselves

to a certain subsector. As in the undeformed case one can check by direct inspection that

the following ansatz is a consistent truncation of the complete background.

θ2 = const., φ2 = const. (3.5)

To further simplify considerations we choose θ2 = 0. Next we choose the following ansatz

for solitonic string configurations

t = κτ, θ2 = 0, φ2 = const.

Ψ = ωψτ + ψ(y); Φ = ωφτ + φ(y), θ = θ(y), (3.6)

where y = cσ − dτ , Ψ is the U(1) fiber coordinate while Φ ≡ φ1.

With this choice the metric becomes (we set R2 = 1)

ds2 = −dt2 +
1

6
dθ2 +

G

6
sin2 θdφ2 +

G

9
(dψ + cos θdφ)2 (3.7)

1We skip here the rest of the field content since it will not be used in what follows.
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and the B-field takes the form

B = Gγ̃
sin2 θ

54
. (3.8)

In (3.7) and (3.8) the factor G can be read off from (3.4)

G−1 = 1 + γ̃2 sin2 θ

54
. (3.9)

We are looking for solutions with the profile of arc or spike moving along the isometry

directions and described by (3.6). The Lagrangian can be easily deduced from (3.7), (3.8)

and takes the form

L ∼ ṫ2 +
1

6
(−θ̇2 + θ′2) +

G

9

(

1 +
sin2 θ

2

)

(−Φ̇2 + Φ′2)

+
G

9
(−Ψ̇2 + Ψ′2) +

2G

9
cos θ(−Ψ̇Φ̇ + Ψ′Φ′) + 2Gγ̃

sin2 θ

54

(

Φ̇Ψ′ − Ψ̇Φ′). (3.10)

In terms of θ, φ and ψ it reads off

L ∼ ṫ2 +
c2 − d2

6
θ′2 +

G

9

(

1 +
sin2 θ

2

)

[

−
(

ωφ − dφ′)2 + c2φ′2
]

+2
G

9
cos θ

[

−
(

ωψ − dψ′)(ωφ − dφ′
)

+ c2ψ′φ′
]

+
G

9

[

−
(

ωψ − dψ′)2 + c2ψ′2
]

+2Gγ̃
sin2 θ

54
c
[

(

ωφ − dφ′
)

ψ′ −
(

ωψ − dψ′)φ′
]

. (3.11)

It is easy to vary the action and to obtain the equations of motion for ψ and φ. They can

be integrated once providing expressions in terms of θ. Explicitly it goes as follows. For ψ

we get

∂y

{

2G

9

[

d
(

ωψ − dψ′)+ c2ψ′]+
2G

9
cos θ

[

d
(

ωφ − dφ′
)

+ c2φ′
]

+ 2Gγ̃
sin2 θ

54
cωφ

}

= 0, (3.12)

or
(

c2 − d2
)

ψ′ + dωψ + cos θ
[(

c2 − d2
)

φ′ + dωφ
]

+ γ̃
sin2 θ

6
cωφ =

9Aψ
2G

. (3.13)

Analogously, for φ we find

∂y

{

2G

9

(

1 +
sin2 θ

2

)

[

d
(

ωφ − dφ′
)

+ c2φ′
]

+
2G

9
cos θ

[

d
(

ωψ − dψ′)+ c2ψ′]− 2Gγ̃
sin2 θ

54
cωψ

}

= 0, (3.14)

or

(

1 +
sin2 θ

2

)

[(

c2 − d2
)

φ′ + dωφ
]

+ cos θ
[(

c2 − d2
)

ψ′ + dωψ
]

− γ̃ sin2 θ

6
cωψ =

9Aφ
2G

. (3.15)
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It is easy to obtain expressions for ψ′ and φ′ separately, namely from (3.13) and (3.15)

we get
(

c2 − d2
)

φ′ + dωφ =
3
(

Aφ −Aψ cos θ
)

G sin2 θ
+ γ̃

c

9

(

ωψ + ωφ cos θ
)

, (3.16)

and

(c2 − d2)ψ′ + ωψd =
3Aψ
2G

+
3(Aψ −Aφ cos θ)

G sin2 θ
− γ̃cωψ cos θ

9
− γ̃cωφ

9

(

1 +
sin2 θ

2

)

. (3.17)

Virasoro constraints. One of the important issues are the Virasoro constraints. In

the parameterization we work with, the Virasoro constraints have both, diagonal and off-

diagonal components non-trivial. The diagonal part of the Virasoro constraints consists of

Tττ + Tσσ = 0

1

6
(θ̇2+θ′2)+

G

3

(

sin2 θ

2
+

cos2 θ

3

)

(Φ̇2+Φ′2)+
G

9
(Ψ̇2+Ψ′2)+

2G

9
cos θ(Ψ̇Φ̇+Ψ′Φ′) = κ2.

(3.18)

or

c2 + d2

6
θ′2 +

G

9

(

1 +
sin2 θ

2

)

[

(

ωφ − dφ′)2 + c2φ′2
]

(3.19)

+2
G

9
cos θ

[

(

ωψ − dψ′)(ωφ − dφ′
)

+ c2ψ′φ′
]

+
G

9

[

(

ωψ − dψ′)2 + c2ψ′2
]

= κ2.

For future use it is convenient to rewrite it in the form

1

6
θ′2 +

G

9

(

1 +
sin2 θ

2

)

[

φ′2 +
ω2
φ − 2dωφφ

′

c2 + d2

]

(3.20)

+2
G

9
cos θ

[

ψ′φ′ +
ωψωφ − d(ωφψ′ + ωψφ

′)

c2 + d2

]

+
G

9

[

ψ′2 +
ω2
ψ − 2dωψψ

′

c2 + d2

]

=
κ2

c2 + d2
.

The off-diagonal part is

−cd
6
θ′2 +

G

9

(

1 +
sin2 θ

2

)

(ωφ − dφ′)cφ′ +
G

9

(

ωψ − dψ′)cψ′

+ cos θ
G

9

[

(

ωψ − dψ′)φ′ + (ωφ − dφ′)ψ′
]

c = 0. (3.21)

This can be rewritten as

1

6
θ′2 +

G

9

(

1 +
sin2 θ

2

)(

φ′2 − ωφφ
′

d

)

+
G

9

(

ψ′2 − ωψψ
′

d

)

+
G

9
cos θ

[

2ψ′φ′ − ωψφ
′ + ωφψ

′

d

]

= 0. (3.22)

Subtracting (3.22) from (3.21) we find

G

9

(

1 +
sin2 θ

2

)[

ω2
φ +

(c2 − d2)ωφφ
′

d

]

+
G

9

[

ω2
ψ +

(c2 − d2)ωψψ
′

d

]

+
G

9
cos θ

[

2ωψωφ +
(c2 − d2)(ωψφ

′ + ωφψ
′)

d

]

= κ2. (3.23)
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Substituting the explicit form of φ′ and ψ′ from (3.16) and (3.17) we find

ωφAφ + ωψAψ = 2κ2d. (3.24)

This expression puts a string restriction on the parameters of the solutions.

Equation of motion for θ. The equation of motion for θ, obtained by varying the

action, is more complicated since it contains the other dynamical variables. It is easier to

use another way to obtain it - by making use of the Virasoro constraints. Here we will use

the second (off-diagonal) Virasoro constraint to obtain the equation of motion for θ. The

latter can be written in the form

θ′2 +
2G

3d

{

(

dφ′ − ωφ
)

[(

1 +
sin2 θ

2

)

φ′ + cos θ ψ′
]

+
(

dψ′ − ωψ
)

[

ψ′ + cos θ φ′
]

}

= 0.

(3.25)

From (3.15) we have

(

c2− d2
)

[(

1 +
sin2 θ

2

)

φ′ + cos θ ψ′
]

=
9Aφ
2G

+ γ̃cωψ
sin2 θ

6
−
(

1 +
sin2 θ

2

)

dωφ− cos θ dωψ.

(3.26)

From (3.13) we find

(

c2 − d2
)

[

ψ′ + cos θ φ′
]

=
9Aψ
2G
− γ̃cωφ

sin2 θ

6
− dωψ − dωφ cos θ. (3.27)

On other hand

dφ′ − ωφ =

{

3d
(

Aφ −Aψ cos θ
)

G sin2 θ
+ γ̃

cd

9

(

ωψ + ωφ cos θ
)

− c2ωφ
}

/
(

c2 − d2
)

. (3.28)

and

dψ′ − ωψ =

{

3dAψ
2G

+
3d(Aψ −Aφ cos θ)

G sin2 θ
− γ̃dcωψ cos θ

9

− γ̃dcωφ
9

(

1 +
sin2 θ

2

)

− c2ωψ
}

/
(

c2 − d2
)

. (3.29)

Substituting into the equation (3.25) we find

θ′2 +
2G

3(c2 − d2)2

{

· · ·+ c2ωψ(ωψ + ωφ cos θ)G−1

+c2ω2
φ

(

1 +
sin2 θ

2

)

G−1 + c2ωψωφ cos θG−1

}

= 0, (3.30)

where · · · are the terms proportional toG−1 andG−2 which come from direct multiplication

by G−1 in (3.26), (3.29). The others are organized in G−1 as above.
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In (3.30) the terms in the brackets proportional to G−2 are

{. . . }|∼ 1

G2

=
27d

2G2 sin2 θ

[

Aφ
(

Aφ −Aψ cos θ
)

+Aψ
(

Aψ −Aφ cos θ
)

+A2
ψ

sin2 θ

2

]

. (3.31)

The terms in the brackets in (3.30) proportional to 1/G get contributions from two sources.

The contributions coming from φ

{. . . }φ =
1

2G sin2 θ

[

sin2 θ

[

γ̃cdAφ
(

ωψ + ωφ cos θ
)

− 9c2ωφAφ (3.32)

−
(

3d2ωf − γ̃dcωψ
)(

Aφ −Aψ cos θ
)

]

− 6d2
(

Aφ −Aψ cos θ
)(

ωφ + ωψ cos θ
)

]

and terms proportional to 1/G coming from ψ

{. . . }ψ =
−1

2G sin2 θ

[

sin2 θ

[

γ̃cdAψ
(

ωφ + ωψ cos θ
)

+ γ̃dcωfAψ sin2 θ + 9c2ωψAψ

+3d2Aψ
(

ωψ + ωφ cos θ
)

+ γ̃dcωφ
(

Aψ −Aφ cos θ
)

]

+6d2
(

Aψ −Aφ cos θ
)(

ωψ + ωφ cos θ
)

]

. (3.33)

To obtain the complete form of the equation we have to add all the terms (3.31), (3.33)

and substitute into (3.30).

Let us write down the final form of the equation

θ′2 +
1

3(c2 − d2)2 sin2 θ

{

[

(2cωφ − γ̃Aψ)2

4

]

sin4 θ

+(2cωφ − γ̃Aψ)(2cωψ + γ̃Aφ) cos θ sin2 θ

+
1

2

[

(2cωψ + γ̃Aφ)
2 + (2cωφ − γ̃Aψ)2 + 27A2

ψ

−18

d
(c2 + d2)(Aφωφ +Aψωψ)

]

sin2 θ

−54AφAψ cos θ + 27(A2
ψ +A2

φ)

}

= 0. (3.34)

For future use we need an expression in terms of cos θ only, i.e. the equation in terms of
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cos θ becomes

θ′2 +
1

3(c2 − d2)2 sin2 θ

{

[

(2cωφ − γ̃Aψ)2

4

]

cos4 θ − (2cωφ − γ̃Aψ)(2cωψ + γ̃Aφ) cos3 θ

−1

2

[

(2cωψ + γ̃Aφ)
2 + 2(2cωφ − γ̃Aψ)2 + 27A2

ψ

−18

d
(c2 + d2)(Aφωφ +Aψωψ)

]

cos2 θ

+ [(2cωφ − γ̃Aψ)(2cωψ + γ̃Aφ)− 54AφAψ] cos θ

+
1

2

[

(2cωψ + γ̃Aφ)
2 +

3

2
(2cωφ − γ̃Aψ)2 (3.35)

+27(3A2
ψ + 2A2

φ)−
18

d
(c2 + d2)(Aφωφ +Aψωψ)

]

}

= 0.

The turning point. As discussed in the Introduction, we are looking for solutions de-

scribing strings with certain profile, namely, arcs or spikes. Therefore, these must have

turning points. Here we derive the relations following from the condition (3.34) to have a

turning point at θ∗ = π.

One can see that the only singular terms at θ∗ = π are those in the last line of (3.34). To

cancel these singularities we must impose some conditions. The last line can be written as

27

sin2 θ

[(

Aφ −Aψ cos θ
)2

+A2
ψ sin2 θ

]

. (3.36)

Then if

Aψ = −Aφ, (3.37)

in the limit θ → π the first term in the brackets vanishes as ∼ 04 and the only finite

contribution comes from the second term (= 27A2
ψ). With (3.37) one can safely write

down the turning point condition at θ∗ = π

1

2
(2cωφ + γ̃Aφ)

2 +
1

2
(2cωψ + γ̃Aφ)

2 − (2cωφ + γ̃Aφ)(2cωψ + γ̃Aφ) +
81

2
A2
φ

=
18

2d
(c2 + d2)Aφ(ωφ − ωψ), (3.38)

or

81A2
φ − 18

c2 + d2

d
Aφ(ωφ − ωψ) + 4c2(ωφ − ωψ)2 = 0. (3.39)

The last equation can be written as
(

Aφ −
2

9
d(ωφ − ωψ)

)(

Aφ −
2c2

9d
(ωφ − ωψ)

)

= 0. (3.40)

From (3.40) we find two conditions

Aφ =

{

2
9d(ωφ − ωψ) giant magnon

2c2

9d (ωφ − ωψ) single spike
(3.41)
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We remind that the last expression is accompanied by

Aψ = −Aφ.

The solution. Let us introduce, for convenience, the notations:

Bψ = 2cωψ + γ̃Aφ, Bφ = 2cωφ + γ̃Aφ. (3.42)

In terms of cos2 θ
2 = u the equation (3.36) can be written in the following form:

4u′2 +
1

3(c2 − d2)2

{

4B2
φu

4 − 8Bφ(Bφ +Bψ)u3 (3.43)

+2

[

B2
φ −B2

ψ + 6BφBψ − 27A2
φ +

18

d
(c2 + d2)Aφ(ωφ − ωψ)

]

u2

+2

[

(Bψ −Bφ)2 + 81A2
φ −

18

d
(c2 + d2)Aφ(ωφ − ωψ)

]

u

}

= 0.

The turning point condition (3.41) in these variables is

(Bψ −Bφ)2 + 81A2
φ −

18

d
(c2 + d2)Aφ(ωφ − ωψ) = 0, (3.44)

and therefore the last term in the equation (3.43) vanishes

u′2 =
1

3(c2 − d2)2
[

−B2
φu

4 + 2Bφ (Bφ +Bψ) u3 −
(

B2
φ + 2BφBψ + 27A2

φ

)

u2
]

. (3.45)

A simple analysis analogous to that in [54] shows that the equation (3.45) can be written as:

u′2 =
B2
φ

3(c2 − d2)2
u2 (α> − u)(u+ α−), (3.46)

where

0 < α> = 1 +
Bψ
Bφ



1−

√

√

√

√1− 27
A2
φ

B2
ψ



 < 1,

α− = |α<| = −1− Bψ
Bφ



1 +

√

√

√

√1− 27
A2
φ

B2
ψ



 > 0, (3.47)

and 0 ≤ u ≤ α> < 1.

The solution can be easily obtained and is given by:

u(y) =

(

2α>α−
α> + α−

)

1

cosh
(

|a|√α>α− y
)

− α>−α
−

α>+α
−

, (3.48)

where

a2 =
B2
φ

3(c2 − d2)2
. (3.49)

Having obtained the solutions with the desired profile, one can proceed with the disper-

sion relations.
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4 Dispersion relations

In this section we derive the conserved charges and the corresponding dispersion relations.

Having obtained the classical string solutions, it is easy to compute the conserved charges.

Due to the specific regime we are working in, namely the very high energies corresponding

to very long dual operators, some of them are finite but some are divergent. The two cases,

giant magnons and single spikes differs in boundary conditions, i.e. the profile of the string

propagating along the isometry directions.

4.1 Conserved charges

Let us start with computing the conserved quantities in the theory. By definition, the

conserved momenta corresponding to the isometries are:

Pψ =
∂L

∂(∂τΨ)
, Pφ =

∂L
∂(∂τΦ)

, Pt =
∂L

∂(∂τ t)
(4.1)

Their explicit form is given by

− 2

T
Pψ = −2G

9

[

∂τΨ + cos θ∂τΦ + γ̃
sin2 θ

6
∂σΦ

]

, (4.2)

− 2

T
Pφ = −2G

9

[(

1 +
sin2 θ

2

)

∂τΦ + cos θ∂τΨ− γ̃
sin2 θ

6
∂σΨ

]

, (4.3)

− 1

T
Pt = ∂τ t, (4.4)

or, substituting for ∂σ,τΨ and ∂σ,τΦ

− 2

T
Pψ =

2G

9

[

dψ′ − ωψ + cos θ(dφ′ − ωφ)− γ̃c
sin2 θ

6
φ′
]

, (4.5)

− 2

T
Pφ =

2G

9

[(

1 +
sin2 θ

2

)

(

dφ′ − ωφ
)

+ cos θ(dψ′ − ωψ) + γ̃c
sin2 θ

6
ψ′
]

, (4.6)

− 1

T
Pt = κ. (4.7)

The corresponding charges are defined by

Jψ =

∞
∫

−∞

dy

c
Pψ =

T

9

∞
∫

−∞

dy

c
G

[

ωψ − dψ′ + cos θ(ωφ − dφ′) + γ̃c
sin2 θ

6
φ′
]

, (4.8)

Jφ =

∞
∫

−∞

dy

c
Pφ =

T

9

∞
∫

−∞

dy

c

[(

1 +
sin2 θ

2

)

(

ωφ − dφ′
)

+ cos θ(ωψ − dψ′)− γ̃csin
2 θ

6
ψ′
]

,

(4.9)

E = −
∞
∫

−∞

dy

c
Pt = T

∞
∫

−∞

dy

c
κ. (4.10)
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In the rest of this subsection we will compute explicitly the above charges. Due to the

specific limit of large quantum numbers some expressions are divergent and we will ana-

lyze them here. In order to obtain the dispersion relations we need to find certain finite

combinations out of the divergent ones. Below we start this analysis.

Computation of Pψ. To obtain the dispersion relations we need the explicit form of

the conserved charges. Let us first find the explicit expression for Pψ

− 2

T
Pψ =

2G

9(c2 − d2)

{

3dAψ
2G

+
3d(Aψ −Aφ cos θ)

G sin2 θ
− γ̃ dc

9

(

ωφ + ωψ cos θ
)

− γ̃ dcωφ
9

.
sin2 θ

2

−c2ωψ +
3d cos θ(Aφ −Aψ cos θ)

G sin2 θ
+ γ̃

cd

9

(

ωφ cos2 θ + ωψ cos θ
)

−c2ωφ cos θ − γ̃ sin2 θ

6
c
(

c2 − d2
)

φ′
}

(4.11)

=
2G

9(c2 − d2)

{

9dAψ
2G

− c2
(

ωψ + ωφ cos θ
)

− γ̃csin
2 θ

6

[

(c2 − d2)φ′ + dωφ
]

}

.

The expression in the square brackets can be replaced by the expression from (3.16). The

result we find is

− 2

T
Pψ =

2G

9(c2 − d2)

{

9dAψ − γ̃c(Aφ −Aψ cos θ)

2G
− c2

(

ωψ + ωφ cos θ
)

[

1 + γ̃2 sin2 θ

54

]}

.

(4.12)

One can observe that the expression in the square brackets is exactly G−1, so the final

explicit expression for the momentum Pψ is

− 2

T
Pψ =

1

9(c2 − d2)

[

9dAψ − γ̃c
(

Aφ −Aψ cos θ
)

− 2c2
(

ωψ + ωφ cos θ
)

]

. (4.13)

Computation of Pφ. Here we derive the explicit form of Pφ. We start with (4.6)

− 2

T
Pφ =

2G

9

{(

1 +
sin2

2

)

(

dφ′ − ωφ
)

+ cos θ
(

dψ′ − ωψ
)

+ γ̃c
sin2 θ

6
ψ′
}

(4.14)

=
2G

9

{[(

1 +
sin2

2

)

φ′ + cos θ ψ′
]

−
(

1 +
sin2 θ

2

)

ωφ − cos θ ωψ + γ̃c
sin2 θ

2
ψ′
}

.

The expression in the square brackets is given in (3.26) and its substitution into (4.15) gives

− 2

T
Pφ =

2G

9(c2 − d2)

{

9dAφ
2G

+ γ̃
sin2 θ

6
c
[

(c2 − d2)ψ′ + dωψ
]

−c2
((

1 +
sin2 θ

2

)

ωφ + cos θωψ

)

.

}

(4.15)
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The expression in the square brackets is exactly that of (3.17). As a result, we find

− 2

T
Pφ =

2G

9(c2 − d2)

{

9dAφ + γ̃c sin2 θ
2 Aψ + γ̃c(Aψ −Aφ cos θ)

2G

−c2
((

1 +
sin2 θ

2

)

ωφ + cos θωψ

)[

1 + γ̃2 sin2 θ

54

]

}

. (4.16)

In the square brackets one can recognize the expression for G−1, so the final expression

takes the form

− 2

T
Pφ =

1

9(c2 − d2)

[

9dAφ − γ̃cAφ cos θ + γ̃c

(

1 +
sin2 θ

2

)

Aψ

−2c2
((

1 +
sin2 θ

2

)

ωφ + cos θωψ

)

]

. (4.17)

As in the undeformed case the momentum Pψ is linear in u(y) = cos2 θ/2, while the

momentum Pφ is quadratic. It is expected that there is a part analogous to the dispersion

relations in the undeformed case (with some γ̃ deformations), but we also expect to have

additional terms. Only the explicit computations can answer the question - what is the

meaning and importance of the deformation?

The angle amplitude. From (3.16) and (3.17) it is clear that integrating ψ′ and φ′

we get divergent result. As in the undeformed case, one can look for a finite expression

combining the two angles φ′ and ψ′.

To this end we define the following combination

∆ϕ =

∫

dy
φ′ − ψ′

2
. (4.18)

Now we are going to find the explicit expressions for the integrand and analyze the eventual

divergences.

We start with subtracting (3.16) and (3.17)

(

c2 − d2
)[

φ′ − ψ′] =
3(Aφ −Aψ)(1 + cos θ)− 3Aψ

sin2 θ
2

sin2 θ

(

1 +
γ̃2

54
sin2 θ

)

− d(ωφ − ωψ)

+γ̃
c

9
(ωφ + ωψ)(1 + cos θ) + γ̃

cωφ
9

sin2 θ

2
. (4.19)

In order to obtain an uniform description, it is better to pass to a variable u = cos2 θ/2

and use

1 + cos θ = 2u, sin2 θ = 4u(1− u). (4.20)

Thus, we find for the “angle deficit” the expression

(

c2 − d2
)[

φ′ − ψ′] =
6(Aφ −Aψ)− 6Aψ(1− u)− 4d(ωφ − ωψ)(1 − u)

4(1− u) + γ̃
2c

9
(ωφ − ωψ)u

+
γ̃2

9
[(Aφ −Aψ)u−Aψ(1− u)u] + γ̃

2c

9
ωφ(1− u)u. (4.21)
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Using the condition for the turning point (3.37) we find

(

c2 − d2
)[

φ′ − ψ′] =
18Aφ − 4d(ωφ − ωψ) +

[

4d(ωφ − ωψ)− 6Aφ
]

u

4(1− u) + γ̃
2c

9
(ωφ − ωψ)u

+
γ̃2

9

[

(Aφ −Aψ)u−Aψ(1− u)u
]

+ γ̃
2c

9
ωφ(1− u)u. (4.22)

The final expression, we will use in what follows, is

(

c2 − d2
)[

φ′ − ψ′] =
3Aφ
1− u +

3

2
Aφ − d(ωφ − ωψ) +

γ̃

9
(2Bφ +Bψ)u− γ̃

9
Bφu

2. (4.23)

Let us make a few remarks about the behavior of the angle deficit in the two cases we are

going to analyze. It is easy to see that integrating ∼ 1/(1 − u) we will obtain a divergent

result. In the magnon case the divergent term ∼ 1/(1− u) vanishes due to (3.41) and the

expression becomes finite. In the single spike case the angle deficit is still divergent as it

should be (we consider configurations with large winding numbers). In what follows we

will consider the two cases separately.

4.2 Dispersion relations for giant magnons

In this subsection we will derive the dispersion relations for the giant magnons in the

deformed conifold. The giant magnons are characterized with certain conditions, namely

for giant magnon string solutions we have

Aφ =
2

9
d(ωφ − ωψ), Aψ = −Aφ

which combined with the second Virasoro constraint (3.24) gives

κ =
ωφ − ωψ

3
(4.24)

Next task is to compute the conserved quantities for this case.

Expression for Pψ. The expression for Pψ in terms of u is

− 2

T
Pψ = − 1

9(c2 − d2)

[

9d

(

Aφ −
2c2

9d
(ωφ − ωψ)

)

+
(

4c2ωφ + 2γ̃cAφ
)

u

]

. (4.25)

For magnon choice of Aφ (3.41) we find

− 2

T
Pψ =

2

3
· ωφ − ωψ

3
− 1

9(c2 − d2)

(

4c2ωφ + 2γ̃cAφ

)

u. (4.26)

We note that the first term is exactly κ, c.f. (4.24).

It is easy now to write the expression for Pψ

− 2

T
Pψ =

2

3
· ωφ − ωψ

3
− 2c

9(c2 − d2)
Bφ u. (4.27)
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It is clear that integrating (4.27) to obtain the conserved charge we get divergent result.

However, the combination

E + 3Jψ =
BφT

3(c2 − d2)

∫

dy u, (4.28)

is finite since the first term of Pψ cancels against κ from Pt.

Expression for Pφ. The next ingredient we need for the dispersion relations is Pφ. We

simply substitute the constants for the magnon case in the corresponding expression (4.17)

and obtain

− 2

T
Pφ = −2

3
· ωφ − ωψ

3
− 2c

9(c2 − d2)

[

(2c(ωψ + ωφ) + 2γ̃Aφ) u− (2cωφ + γ̃Aφ) u
2
]

. (4.29)

Also, introducing Bφ and Bψ as defined in (3.42) we get

− 2

T
Pφ = −2

3
· ωφ − ωψ

3
− 2c

9(c2 − d2)

[

(

Bφ +Bψ
)

u−Bφ u2
]

. (4.30)

One can observe that the finite combination here is

E − 3Jφ, (4.31)

where the first term cancel κ from E .

Expression for ∆ϕ. As we already mentioned in the last subsection, the angle deficit

∆ϕ defined by (4.18) is finite. Let us derive the explicit expression for ∆ϕ.

The integrand in (4.18) in the magnon case can be derived by just substituting the corre-

sponding values for the constants in (4.23)

(

c2 − d2
)[

φ′ − ψ′] =
2d

3
(ωφ − ωψ)

u

1− u +
(

3γ̃2Aφ + 2γ̃c(2ωφ + ωψ)
)u

9

−
(

γ̃2Aφ + 2γ̃cωφ

)u2

9

=
2

3
d(ωφ − ωψ)

u

1− u +
γ̃

9
(2Bφ +Bψ)u− γ̃

9
Bφu

2. (4.32)

Since the combinations

E

T
+ 3

Jψ
T

=
1

3(c2 − d2)
Bφ

∞
∫

−∞

udy (4.33)

E

T
− 3

Jφ
T

=
1

3(c2 − d2)
Bφ

∞
∫

−∞

u2dy − 1

3(c2 − d2)
(Bφ +Bψ)

∞
∫

−∞

udy, (4.34)
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are finite, one can write the integrand as:

(

c2 − d2
)[

φ′ − ψ′] =
2

3
d(ωφ − ωψ)

u

1− u + (4.35)

+γ̃
(c2 − d2)

3c

[

1

T
(−Pt) + 3

Pψ
T

]

− γ̃ (c2 − d2)

3c

[

1

T
(−Pt)− 3

Pφ
T

]

.

The angle amplitude then takes the following final form

∆ϕ =

∞
∫

−∞

dy
φ′ − ψ′

2
=
d(ωφ − ωψ)

3(c2 − d2)

∞
∫

−∞

dy
u

1− u +
γ̃

6

[

E

T
+ 3

Pψ
T

]

− γ̃

6

[

E

T
− 3

Pφ
T

]

. (4.36)

The dispersion relations. Let us define the charge densities as E/T = E , Jψ/T =

Jψ, Jφ/T = Jφ . Then the finite combination of charges take the form:

E + 3Jψ =

√
3

3
aI1, (4.37)

E − 3Jφ =

√
3

3
aI2 −

√
3

3
a
(α> − α−)

2
I1, (4.38)

∆ϕ =
√

(1 + α−)(1− α>)
a

2
I3 +

γ̃

2
(Jψ + Jφ), (4.39)

where the integrals Ii are given in the appendix and α− and α> are defined in (3.47). Using

the explicit form of the integrals Ii (A.2), (A.4) we find:

E + 3Jψ =
2
√

3

3
arccos

(

α− − α>
α− + α>

)

, (4.40)

E − 3Jφ =
2
√

3

3

√
α>α−, (4.41)

∆ϕ = arccos

(

α− − α>
α− + α>

− 2α>α−
α− + α>

)

+
γ̃

2
(Jψ + Jφ). (4.42)

From here we find that the constants α> and α− are related to the charge densities

as follows:

√
α>α− =

3

2
√

3
(E − 3Jφ), (4.43)

α− − α>
α− + α>

= cos

[

3

2
√

3
(E + 3Jψ)

]

. (4.44)

Simple algebraic calculations2 lead to

cos

[

3

2
√

3
(E + 3Jψ)

]

− 3

2
√

3
(E − 3Jφ) sin

[

3

2
√

3
(E + 3Jψ)

]

= cos

(

∆ϕ− γ̃

2

(

Jφ + Jψ
)

)

.

(4.45)

2We use for instance that (α
−
− α>)/(α> + α

−
) −√

α>α
−

p

1 − ((α
−
− α>)/(α> + α

−
))2 = cos(∆ϕ −

γ̃/2(Jφ + Jψ)).
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The final form of the dispersion relations in the magnon case is

√
3

2
(E − 3Jφ) =

cos
[√

3
2 (E + 3Jψ)

]

− cos
(

∆ϕ− γ̃/2(Jφ + Jψ)
)

sin
[√

3
2 (E + 3Jψ)

] . (4.46)

To close this subsection, let us make some short comments. First of all, the transcendental

character of the dispersion relation persists in the deformed background. The deformation

parameter enters the expression by shifting the angle amplitude by term proportional to

γ times the total spin.3 The BMN and basic giant magnon analysis considered in [54]

can be easily repeated with the same conclusions (up to the gamma shift). Note that

each conserved charge depends on the γ parameter, but this dependence in hidden in the

dispersion relations.

4.3 Dispersion relations for single spike strings

To obtain the dispersion relation for the single spike strings we have to compute the con-

served quantities with the parameters describing strings with large winding number. This

requirement leads to the relations (3.41) between the parameters.

Let us start with the condition for single spike string solutions

Aφ =
2c2

9d
(ωφ − ωψ),

which combined with the second Virasoro constraint (3.24) gives

κ =
c(ωφ − ωψ)

3d
. (4.47)

Next, we have to compute all the conserved charges with these adjustments of

the parameters.

Expressions for Pψ and Pφ. We start with the expression for Pψ. The simple substi-

tution of the above values for the parameters into (4.13) gives

− 2

T
Pψ = − 1

9(c2 − d2)

[

9dAφ + 2c2(ωψ − ωφ) + 2cBφ u
]

. (4.48)

Analogously, the expression for Pφ derived from (4.17) has the form

− 2

T
Pφ =

1

9(c2 − d2)

[

9dAφ + 2c2(ωψ − ωφ)− 2c(Bφ +Bψ)u+ 2cBφ u
2
]

. (4.49)

3In [37] another regime where the γ deformation scales to zero is realized
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Expression for ∆ϕ. The general expression for the angle amplitude

(

c2 − d2
)[

φ′ − ψ′] =
3Aφ
1− u +

3

2
Aφ − d(ωφ − ωψ) +

γ̃

9
(2Bφ +Bψ)u− γ̃

9
Bφu

2 (4.50)

in the case of a single spike profile the solution takes the form

(

c2 − d2
)[

φ′ − ψ′] = 3Aφ
u

1− u + 3
(c2 − d2)

c
κ+

γ̃

9
(2Bφ +Bψ)u− γ̃

9
Bφu

2. (4.51)

The dispersion relations. The conserved quantities are

1

T
Pψ =

1

9

c

(c2 − d2)
Bφu (4.52)

1

T
Pφ =

1

9

c

(c2 − d2)
(Bφ +Bψ)u− 1

9

c

(c2 − d2)
Bφu

2. (4.53)

One can see that the charges obtained by integrating the spins in this case are finite:

1

T
Jψ =

1

9(c2 − d2)
Bφ

∞
∫

−∞

dyu (4.54)

1

T
Jφ =

1

9(c2 − d2)
(Bφ +Bψ)

∞
∫

−∞

dyu− 1

9(c2 − d2)
Bφ

∞
∫

−∞

dyu2. (4.55)

Therefore, the total momentum density

1

T
Pψ +

1

T
Pφ =

1

9

c

(c2 − d2)
(2Bφ +Bψ)u− 1

9

c

(c2 − d2)
Bφu

2, (4.56)

also defines a finite charge.

As in the undeformed case, the situation with the angle amplitude is more tricky.

From (4.51) and (4.48), (4.49 one finds

(

c2− d2
)[

φ′−ψ′] = 3Aφ
u

1− u + 3
(c2 − d2)

c

(

−Pt
T

)

+ γ̃
(c2 − d2)

c

(

1

T
Pψ +

1

T
Pφ

)

. (4.57)

The angle amplitude then is given by

∆ϕ =

∞
∫

−∞

dy
φ′ − ψ′

2
=

3Aφ
2(c2 − d2)

∞
∫

−∞

dy
u

1− u +
3

2

(

E

T

)

+
γ̃

2

(

Jψ
T

+
Jφ
T

)

. (4.58)

We showed explicitly that the angle amplitude itself is divergent (as is the energy), but there

exists a finite combination that can be used to find the dispersion relations. From (4.58)

we see that the following combination is a finite:

∆δ ≡ ∆ϕ− 3

2

(

E

T

)

− γ̃

2

(

Jψ
T

+
Jφ
T

)

=
3Aφ

2(c2 − d2)

∞
∫

−∞

dy
u

1− u. (4.59)
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It is useful to introduce again the charge densities E/T = E , Jψ/T = Jψ, Jφ/T = Jφ,
which are found to be

Jψ =

√
3

9
aI1, (4.60)

Jφ = −
√

3

9
aI2 +

√
3

9
a
(α> − α−)

2
I1, (4.61)

∆δ ≡ ∆ϕ− 3

2
E − γ̃

2
(Jψ + Jφ) =

√

(1 + α−)(1− α>)
a

2
I3. (4.62)

The substitution of the explicit form of the integrals Ii gives

Jψ =
2
√

3

9
arccos

(

α− − α>
α− + α>

)

, (4.63)

Jφ = −2
√

3

9

√
α>α−, (4.64)

∆δ = arccos

(

α− − α>
α− + α>

− 2α>α−
α− + α>

)

. (4.65)

One can again express the constants α> and α− in terms of the charge densities

−√α>α− =
3
√

3

2
Jφ, (4.66)

α− − α>
α− + α>

= cos

(

3
√

3

2
Jψ
)

. (4.67)

Using that

α− − α>
α− + α>

−√α>α−

√

1−
(

α− − α>
α− + α>

)2

= cos ∆δ. (4.68)

we find

cos

(

3
√

3

2
Jψ
)

+
3
√

3

2
Jφ sin

(

3
√

3

2
Jψ
)

= cos ∆δ. (4.69)

The final form of the dispersion relations is

− 3
√

3

2
Jφ =

cos
(

3
√

3
2 Jψ

)

− cos ∆δ

sin
(

3
√

3
2 Jψ

) . (4.70)

The transcendental character of the dispersion relations persists as expected. The non-

trivial shift of the angle amplitude is of the same form as in the case of the giant magnons

and therefore has an universal form.
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5 Conclusions

In this paper we have studied the problem of existence of a certain class solitonic solutions

of strings in the beta-deformed T 1,1 which is the base of the conifold. The latter is an

important example of a string dual of gauge theory with less than N = 4 supersymmetry

and has many interesting applications.

To set up the notations and make the paper more self contained, first we give a short review

of the magnon and single spike solutions in the undeformed case as well as the magnon

and spiky solutions in γ-deformed sphere S3
γ . In the following sections we present our

original results, which can be summarized as follows. In section 3 we derive and analyze

the classical string solitons of the magnon and single spike strings type for a subsector of the

γ-deformed conifold. In the next section we obtain the dispersion relations for the classical

solution found in the previous section. The results show that the dispersion relations are

of the same transcendental type as the ones in the undeformed case [54]. The explicit

dependence on γ shows up as a shift of the (generalized) angular amplitude - a behavior

familiar from the studies of most supersymmetric case of strings in deformed AdS5 × S5

background [33–36].

There are two essential differences from the known result of giant magnon and single spike

strings in AdS5 × S5. The first one is that the dispersion relations relate the conserved

charges in a transcendental way in both cases - undeformed and γ-deformed conifold. This

indicates that if there are integrable structures on the conifold they will be much more

complicated than the known from the most supersymmetric case. The second difference

is that, although the dispersion relations explicitly “feels” the γ-deformation through a

shift in the angular extend of the magnon profile or winding number, in our case it has a

qualitatively new feature. While in the case of sphere the shift was just by γπ4 and one can

turn on the regime of large charges in which classically the γ term scales to zero [37], here

this shift is quite different. As shown in (4.46) and (4.70), it is proportional to the total

momentum, which in our regime of validity is of the order of energy, i.e. very large. It seems

that in our case this contribution cannot be made vanishing and it has exactly the form of

the non-trivial twist of the boundary conditions. In any case, it is interesting that the shift

involves also the conserved charges, a feature which deserves to be thoroughly analyzed.

An important issue to pursue is the search for integrable structures. This is an important

open question which, if positive, would have important contribution to the understanding

of the string/gauge theory duality. Another direction is to extend the analysis in this

paper to the dynamics on the full T 1,1 manifolds [57] which is less ambitious but also

very important.

Finally, it is known that there exists an one-parameter family of AdS5 × X5 solutions

which interpolates between the Klebanov-Witten background and the Pilch-Warner back-

ground [58]. It would be interesting to look for solitonic solutions in Pilch-Warner back-

4Note that actually we also used the identification γ̃ =
√

αγ.
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ground, more over that not too much is known about quasiclassical strings in this back-

ground [60].
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A Useful formulae

Some integrals. Let us write down some useful integrals used in the calculations. Before

that we stress on the follolwing point. In accordance with the equations of motion we are

dealing with solitary wave solution u(y) = cos2 θ/2. The turning point θ(y = 0) = θ0
corresponds to u(y = 0) = α> = cos2 θ0

2 while the turning point θ(y =∞) = π corresponds

to u(y = ∞) = 0. Note that when y increases from 0 to ∞, θ(y) increase from θ0 to

π (0 < θ0 6 θ(y) 6 π), and hence the function u(y) = cos2 θ(y)
2 decrease from α> to 0

(1 > α > u(y) > 0).

In computing cinserved charges we need three integrals. First integral entering the calcu-

lations of the dispersion relations is

I1 =

∞
∫

−∞

u dy. (A.1)

To calculate the integral we use (3.46) and obtain

I1 =
2

|a| arctan
(

2
√
α>α−

α− − α>

)

=
2

|a| arccos
(

α− − α>
α− + α>

)

=
4

|a| arccos
√

α−
α> + α−

(A.2)

Another integral appearing in our calculations is

I2 =

∞
∫

−∞

u2dy =
2

|a|
(α> − α−)

2
arctan

(

2
√
α>α−

α− − α>

)

+
2

|a|
√
α>α− =

=
2

|a|
(α> − α−)

2
arccos

(

α− − α>
α− + α>

)

+
2

|a|
√
α>α− (A.3)
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We also used

I3 =

∞
∫

−∞

u

1− udy

=
2

|a|
1

√

(1 + α−)(1 − α>)
arctan

(

2
√

α>α−(1 + α−)(1 − α>)

α− − α> − 2α>α−

)

=
2

|a|
1

√

(1 + α−)(1 − α>)
arccos

(

α− − α>
α− + α>

− 2α>α−
α− + α>

)

. (A.4)

Some relations. There is a relation between I1 and I2, which has the form

I2 =
α> − α−

2
I1 −

1

a

√
α>α−. (A.5)

Also, we have the relations

a =
Bφ√

3(c2 − d2)
,

(α> − α−)

2
= 1 +

Bψ
Bφ

,
√

(1 + α−)(1− α>) =
3
√

3Aφ
Bφ

. (A.6)
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